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Abstract

This paper describes a class of convex programs with tree constraints that
has applications in production planning, capacity expansion, and other
related areas. A reduction procedure is presented for solving this class of
convex programs with N variables. This reduction procedure determines an
optimal solution to the convex problem by solving at most N simple convex
subproblems. Hence, this reduction procedure is an efficient approach for
solving large scale convex programs of this sort. (ke-)
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1. Introduction

Consider a directed tree T that consists of a set of nodes N and a set of

directed arcs E, where E is a subset of NxN. For each arc (j,i) E E that

emanates from node j and terminates at node i, node j is an immediate

predecessor of node i and node i is an immediate successor of node j. Hence,

the root node of T has no immediate successor and each terminal node of T has

no immediate predecessor. For each node i that is not the root node nor a

terminal node, node i has exactly one immediate successor S(i) and a set of

immediate predecessors P(i) such that (j,i) E E for each j E P(i). Each node

i is associated with a decision variable xi . Each decision variable xi is

required to satisfy a set of tree constraints such that xi <5 x.i for each j E

P(i). Let x be a INlxl vector whose i-th entry equals xi . Then, the convex

program with tree constraints can be formulated as

(P) Min f(x)

(1) st x, < xJ for j E P(i) and for each i e N

(2, li < x i < ui for each i e N,

where f is assumed to be continuous, differentiable and strictly convex over

!IN(. Also, li and ui are the lower and upper bounds on each decision

variable xi; respectively. A feasible solution to problem (P) is a set of

xi s that satisfies the "box" constraints (2) and the tree constraints (1).

For each node i, let A(i) denote the set of predecessors of node i. Then it

is easy to check that problem (P) is feasible if and only if 1 :S uJ for each

j e A(i) and for each i C N. For this reason, we assume that li : uj for each

j e A(i). An optimal solution to problem (P) is a feasible solution with

minimum objective value.

Suppose we drop the tree constraints (1) in problem (P). Then problem is

reduced to the following simple convex subproblem:
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(S) Min f(x)

st 1i < xi < ui  for each i e N.

Notice that Problem (S) is a simple convex program with the "box" constraints

and it can be easily solved by considering the first order condition (c.f.

Luenberger (1984)). The simplicity of the subproblem (S) motivates a

reduction scheme, which is described as follows.

Suppose we solve simple convex subproblem (S). Let y denote an optimal

solution of problem (S). If y satisfies all the tree constraints, then y is

also an optimal solution to problem (P); otherwise, we identify a pair of

nodes i and j, and we show Lhdt problem (P) will have an optimal solution x,

such that x*j - x*i . In the latter case, since xi and xJ have the same

optimal value, we can replace x3 by xi in the objective function, and remove

x. from the set of decision variables. Also, we update the remaining tree by

setting S(k) - i for each node k E P(j). Hence, the number of decision

variables is reduced by 1 after each repetition of this cycle, and hence, a

solution to problem (P) becomes trivial after at most INI repetition of this

cycle. Notice that we only solve the "updated" subproblem (S) in each cycle.

Hence, The reduction scheme solves problem (P) by solving at most INI simple

convex subproblems (S). Hence, problem (P) can be quickly solved.

To our knowledge, problem (P) is studied for the first time. Geoffrion

(1967) examined a method that solves general convex programs with linear

constraints by solving a finite sequence of subproblems. This paper presents

a reduction scheme that solves problem (P), a special class of convex

programs, by solving at most INI simple convex subproblems.

This paper is organized as follows. Section 2 discusses the applications
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of problem (P). Section 3 presents a reduction procedure that solves problem

(P) by solving at most I'l simple convex subproblems Section 4 concludes

this paper.

2. Applications of problem (P)

Consider a special case of problem (P) in which the objective function

f is separable. Schwarz and Schrage (1975) discussed the applications of

problem (P) in production planning. In addition, Willaims (1982) showed the

applications of problem (P) in project selection. We omit the details.

When f(x) is not separable, problem (P) has different applications in

production planning, capacity planning, and quality improvement. These

applications are now described, below.

2.1 Dynamic lot sizes

We schedule the production over a finite planning horizon with N

periods. At each period i, let Di denote the cumulative demand from period 1

to period i and let xi be the decision variable that represents the

cumulative production volume from period 1 to period i. (For notational

convenience, let x0 - 0.) Thus, the "actual" production volume in period i

is (xi - x,_1 ), for i - 1..., N. Assume that the demand is drawn at the end

of each period. Then (xi , Di ) represents the inventory level (backorder

level) at the end of period i when (xi - Di) is positive (negative). The

inventory holding cost/backorder cost of carrying zi units at period i is

bi(zi). The production cost for producing z, units at period i is p,(z,).

Hence, the total cost incurred at period i can be rewritten as p,(x- x,_,)

+ hi(x- Di). To determine an optimal production schedule that minimizes the

total cost incurred over the planning horizon, we formulate the following
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optimization problem:

(T) Min f(x) - Z, (p,(x, - x,-,) + h,(x, - Di))

(3) st 0 - x 0 < x, < ... xi- 1 < xi ... < xN+1 - D .

Note that constraints (3) ensures that the cumulative production volume is

non-decreasing over time and it guarantees that the total production volume

meets the total demand over the planning horizon.

Wagner and Whitin (1957) developed the celebrated dynamic lot sizing

model, and studied a different formulation of problem (T) by assuming that

the cost functions pi(.) and h,(.) are concave. Zangwill (1966) extended this

model to the case of backlogging.

In the case when all the cost functions are convex, Veinott (1966)

suggested an interesting approach that searches negative cycles over a

network. His approach is not efficient for solving large problem. This

observation motivates us to develop an efficient approach to solve problem

(T). Since problem (T) is a special case of problem (P), it suffices to

develop an efficient approach for solving problem (P).

2.2 Capacity planning

It is noteworthy to mention that the dynamic lot-sizing model is related

to capacity planning models (c.f. Luss(1982)). To see that, equate the

cumulative production volume xi with capacity level at period i, equate the

production cost p,(xi - x,-1) with the capacity expansion cost. Also, equate

the cumulative demand Di with the demand required at period i, equate the

inventory holding/backorder cost hi(x, - D1 ) with the cost of carrying

excessive capacity/the penalty charge of operating below the demand. Hence,

the capacity planning problem can be formulated as problem (T). Because

problem (T) is a special case of problem (P), and hence, problem (P) could

also be applied to capacity planning as well as production planning.
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2.3 Quality improvement

Suppose a manufacturer has a choice to select the quality level for each

of the N periods. Let q,-1 be the quality level of the production process

during period i-l. Then the decision maker selects a quality level q, at the

beginning of period i. Suppose that the management strives for good quality

and desires to improve the quality levels over time; i.e., q,-, < q, for each

i. The cost associated with quality improvement during period i is 1I(q, -

q,-,), where 1I(.) is assumed to be an increasing and convex function. For

any quality level q, the demand function for period i is Di(qj), where the

demand function D,(.) is assumed to be increasing and concave. Thus, the

demand function Di(qj) is rather general and it reflects diminishing returns

in demand over quality. Let p, be the net profit per unit sold during time

period i, where p, - selling price at period i - material cost at period i.

Hence, the net profit generated in period i is p1D,(qi). There is a cost

CG(qj) for maintaining the quality level at q, throughout the time period i.

The cost Ci(q 1 ) consists of operating cost, machine cost, ...etc. We assume

that Cj(qj) is convex and increasing in q. Hence, the optimization problem

that determines optimal quality levels over time can be formulated as the

following convex program:

(U) Min f(q)

(4) st q,-1 < qj for i - 1..., N,

(5) q, < 1,

where f(q) - Z i lI(q, - q,-,) + Cj(qj) P1 D,(qi)) and q0 represents the

initial quality level. Since Ii(.) and C,(.) are convex and since D,(.) is

concave, f(q) is convex. This implies that problem (U) is a special case of

problem (P), which indicates that problem (P) has application in quality

improvement.
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3. Convex program with tree constraints (P)

This section presents a reduction procedure for solving problem (P).

First, notice that any directed tree T is acyclic, and hence, it is possible

to label all the nodes such that n > m for each n E P(m). Second, f is

strictly convex, and therefore, the optimal solution to subproblem (S),

denoted by y, is unique. If y satisfies all the tree constraints, then y is

also an optimal solution to problem (P). If there exists some nodes such that

Y. > Yn' where n e P(m), then we can designate a node i such that i is the

largest node with at least one node n, where n E P(i) and y, > yn" Formally,

(6) i - max ( m E N: 3 n e P(m), Ym > Yn} "

Let z - (z1 ,..., z.) be the optimal solution to problem (P). Clearly, z

satisfies the tree constraints while y does not, and hence, z y and f(y) <

f(z). The following proposition relates the optimal solution z to node i and

to y, where y is the optimal solution to the subproblem (S).

Proposition 1 For any node m E N, zm satisfies all of the following

conditions:

(7) if z. < zn for a node n E P(m), then zn < Yn;

(8) if zM < zn for each node n e P(m), then zm > Ym; and moreover,

(9) if m - i, then zn > yn for each node n E P(m).

Proof: We shall prove Proposition I by contradiction. Suppose that the

optimal solution violates at least one of the conditions. Then it is

sufficient to consider the following cases.

(Case a) Suppose that z violates condition (7). Then there is a node n e P(m)

such that z. < zn but zn > yn. In that case, there must exist a 6 such that 6

> 0, zm < zn - 6 and zn - 6 > Yn" In this case, let z* be a variant of the

6



optimal solution z, where z* - z. for s n, and z*n - Zn - yn. Clearly,

z* can be expressed as a convex combination of z and y; i.e., there exists a

set of an such that 0 < an < 1, and that z*n - anzn + (l-an)y n for n -

1...,. IN. Also, it is easy to check that z* is a feasible solution to

Problem (P). Combine these two observations with the fact that f(y) < f(z),

and that f is strictly convex, we can conclude that f(z*) < f(z), which

contradicts that z is an optimal solution. Hence, this case cannot happen.

(Case b) Suppose that z violates condition (8). Then z. < zn for each node n

E P(m), but zm < Ym" In this case, there must exist a 6 such that 6 > 0, z. +

6 < zn for each node n E P(m) and zm + 6 < y.. Let z* be a variant of

solution z, where z*. - zS for all s m and z*M - zm + 6 < ym. By applying

the same argument used in (a), we can conclude that f(z*) < f(z), which

contradicts that z is an optimal solution. Hence, this case cannot happen.

(Case c) Suppose that z violates condition (9). Then m - i and there exists a

node n E P(m) such that z. < Yn" Let J denote the subset of A(i) whose

optimal value equals zn. Hence, J - ( s E A(i): z, - zn). Notice that n E J

and that for any node s e J,

(10) za - Zn < zk for k e P(s)\J.

It follows from (6) and the fact that s > i for each s E J, where J c A(i),

it is easy to see that yn < y.. This implies that

(11) z - zn < Yn S ya for each s E J.

It follows from (10) and (11), there must exist a 6 such that 6 > 0, and that

z, + 6 < y, for each s e J, and

za + 6 < zk for each s e J and for each k E F(s)\J.

Let z* be a variant of solution z, where z*, - z. for all s 0 J and z*, - za

+ 6 for each s e J. For each node s E J, it is easy to see that
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* -8z + 6 > z >zk - Z*k for k r J and k - S(s),

z* - z + 6 - zk + 6 -Z*k for k E J and k - S(s),

z* -Z + 6 < zk - z*k  for each k E P(s)\J,

z* - z + 6 - zk + 6 - Z*k for each k E P(s)nJ,

z* - z + 6 < ys < us for each s E J, and

z*5 - z + 6 > z > 1 for eachseJ.

These observations imply that z* is also a feasible solution. By applying the

same argument used in (a), we can conclude that f(z*) < f(z), which

contradicts that z is an optimal solution. This case cannot happen, which

completes the proof. II

Given node i, as defined in equation (6), we designate a node j such

that y, has the smallest value among all predecessors in P(i). More formally,

(12) j - argminl Yn: n E P(i))

It follows from the definition of node i in (6), there must exist a node n

such that n E P(i) and y1 > Yn" Combine this observation with the definition

of j in (12), we can conclude

(13) Yj > Yn > "

The conditions (7), (8), and (9) stated in Proposition 1 and (13) enable us

to establish a special relationship between zi and z that is considered in

'he following Proposition.

Proposition 2 The optimal solution z has this property: zj - z i.

Proof: It follows from the assumption on the bounds, as stated in section 1,

1, < un for each n E A(i). Because j E P(i)CA(i) and 1, < un for n r A(i),
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(14) 1i < u.

It follws from (13), the fact that u, > y, , and the fact that yj > 1 , we

have

(15) 1. < yj < Y. < u"

Combine (14), (15) and the fact that 1. < u, and the fact that 1. < U3 , we

conclude that

(16) max (li, 1j) < min (uj, ui}.

Hence, there must exist a feasible solution x to problem (P) such that 1

xi . ui , 1j ! x < ui, and xj - xi. It remains to show that the optimal

solution z has z. - zi . Suppose that zi 7 zi. Since z satisfies the tree

constraints and since j E P(i),

(17) zi  < z o

In this case, condition (7) implies that

(18) z. < Y< .

In addition, condition (9) implies that

(19) Y. Zn for each n E P(i).

It follow from the definition of j in (12),

(20) Yj Yn for each n E P(i).

Combining (19), (20), (18) with (17), we have

(21) zn > Yn ? Yj > z. > zi  for each n r P(i).

It follows from (21) and condition (8),

(22) zi ? Yi"

Combine (22), (13) and (18), we can conclude that

(23) zi 2 Y >Y zi.

Hence, zi > zi, which contradicts (17). This completes the proof. II
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We now apply Proposition 2 to construct a reduction procedure. Suppose

we compute y by solving problem (S). If y satisfies all the tree constraints,

then y is also an optimal solution to problem (P). If y violates some of the

constraints, then we determine a specific node i and a specific node j such

that z, = zi . In the latter case, we reduce the set of decision variables X

by setting X - X \ j, update the objective function by replacing xi by xi,

replace li by Max ( li, 1. ), and replace u1 by Min (ui , u ). We update the

remaining tree by setting S(k) - i for each k E P(j). This allows us to start

the next cycle. Hence, an optimal solution to problem (P) can be found within

INI cycles. Let Z be the current set of decision variables.Table I, below,

presents the reduction procedure that solves problem (P) by solving at most

INI simple convex subproblems.

Reduction Procedure

Step i: Set X - N.

Step 2: [Optimality] Compute y. for each k C X. If yk : y, for I E F(k)

and for each k, set zk - Yk for each k E X and STOP;

otherwise, continue.

Step 3: [Reduction] Compute i and j. Replace xi by xi in the objective

function, set 1, - Max (l, l), set u, - Min ( u,, us), and

replace X by t\j Also, set S(k) - i for each k E P(j).

GOTO Step 2.

Table I

At vach iteration, the reduction procedure either stops and finds an optimal

solution in Step 2 or it reduces the number of decision variables by one in

Step 3. Thus, the reduction procedure stops within INI iterations. We solve
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only one convex subproblem (S) in Step 2. Hence, the reduction procedure

solves problem (P) by solving at most INI simple convex subproblems.

4. Concluding Remarks

Throughout this paper, we assumed that f ic continuous and

differentiable. This assumption guarantees that the first order condition can

be easily obtained, and hence, problem (S) can be quickly solved. In

addition, we assumed that f is strictly convex. This assumption provides

computational advantages for computing the unique optimal solutions of

problem (P) and of its subproblem (S). It can be shown, however, that the

reduction procedure can be adapted to the case when f is not strictly convex.

In that case, the "adapted" reduction procedure would not be efficient

because of two reasons. First, when f is not strictly convex, the set of

optimal solutions to problem (S) is a convex set C, say, which may not have a

simple characterization. Second, given the set C, it is not easy to check

whether there exists an optimal solution y e C such that y satisfies all the

tree constraints.

In sum, we presented a class of separable convex programs with tree

constraints that has applications in production planning, capacity planning,

quality improvement and other related areas. By exploring some special

properties of the optimal solution to problem (P), we developed a reduction

procedure that solves problem (P) by solving at most INI simple convex

subproblems, and hence, problem (P) can be quickly solved. Therefore, this

reduction procedure is efficient for solving large convex programs of this

sort. As a future research direction, we shall examine the case when the

constraints are more general than the tree constraints; for instance, network

constraints.
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